
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

12-2016

SEMEO: A SEMANTIC EQUIVALENCE
ANALYSIS FRAMEWORK FOR
OBFUSCATED ANDROID APPLICATIONS
Zhen Hu
University of Nebraska-Lincoln, hiji1232@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, Information Security Commons, and the Software
Engineering Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Hu, Zhen, "SEMEO: A SEMANTIC EQUIVALENCE ANALYSIS FRAMEWORK FOR OBFUSCATED ANDROID
APPLICATIONS" (2016). Computer Science and Engineering: Theses, Dissertations, and Student Research. 116.
http://digitalcommons.unl.edu/computerscidiss/116

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscidiss/116?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

SEMEO: A SEMANTIC EQUIVALENCE ANALYSIS FRAMEWORK

FOR OBFUSCATED ANDROID APPLICATIONS

by

Zhen Hu

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professors Gregg Rothermel and Witawas Srisa-an

Lincoln, Nebraska

December, 2016

www.manaraa.com

SEMEO: A SEMANTIC EQUIVALENCE ANALYSIS FRAMEWORK

FOR OBFUSCATED ANDROID APPLICATIONS

Zhen Hu, MS

University of Nebraska, 2016

Adviser: Gregg Rothermel, Witawas Srisa-an

Software repackaging is a common approach for creating malware. In this approach,

malware authors inject malicious payloads into legitimate applications; then, to ren-

der security analysis more difficult, they obfuscate most or all of the code. This forces

analysts to spend a large amount of effort filtering out benign obfuscated methods

in order to locate potentially malicious methods for further analysis. If an effective

mechanism for filtering out benign obfuscated methods were available, the number

of methods that must be analyzed could be reduced, allowing analysts to be more

productive. In this thesis, we introduce SEMEO, a highly effective and efficient fil-

tering approach that can determine whether an obfuscated and an original version of

a method are semantically equivalent. Our approach handles seven common, com-

plex types of obfuscation and can be effective even when all types are compositely

applied. In an empirical evaluation, we applied SEMEO to nine Android apps of

varying complexity, and the approach provided over 76% recall and 100% precision

in identifying semantically equivalent methods. We then performed three additional

studies, that showed that: (1) SEMEO is much more effective at identifying seman-

tically equivalent methods than FSquaDRA, an existing technique; (2) SEMEO is

also effective for identifying repackaged apps that have been previously obfuscated

by ProGuard, a popular obfuscation tool; and (3) SEMEO is effective at identifying

semantically equivalent methods in a repackaged, malicious version of Pokémon Go.

www.manaraa.com

iii

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 5

2.1 The Android Runtime System and DEX Instructions 5

2.2 Obfuscation Methods . 6

3 Semantic Equivalence Analysis of Obfuscated Code 9

3.1 Preliminary Information . 11

3.2 Algorithms . 13

4 Empirical Study 19

4.1 Objects of Analysis . 19

4.2 Variables and Measures . 24

4.2.1 Independent Variables . 24

4.2.2 Dependent Variables . 24

www.manaraa.com

iv

4.2.3 Study Operation . 25

4.3 Threats to Validity . 25

5 Results 27

5.1 RQ1 . 27

5.2 RQ2 . 29

5.3 RQ3 . 30

6 Discussion 33

7 Additional Case Studies 36

7.1 Comparing SEMEO to an Existing Alternative Technique 36

7.2 Applying SEMEO on Apps Obfuscated by ProGuard 39

7.3 Identifying Semantically Equivalent Methods in Real-World Repack-

aged Malware . 41

8 Related work 43

9 Conclusions and Future work 45

Bibliography 47

www.manaraa.com

v

List of Figures

2.1 Examples of DEX instructions . 6

2.2 An illustration of code reordering . 8

3.1 Architectural overview of SEMEO . 10

3.2 Example of an instruction graph with data flow information 13

5.1 Recall for obfuscation type groupings G1-G5 on RQ1 Apps 28

5.2 Recall for obfuscation type groupings G1-G5 on RQ2 Apps 30

5.3 Performance of SEMEO on obfuscation type groupings G1-G5 on RQ1

Apps (seconds) . 30

5.4 Performance of SEMEO on obfuscation type groupings G1-G5 on RQ2

Apps (seconds) . 31

www.manaraa.com

vi

List of Tables

3.1 DEX Instruction Categories . 12

4.1 Applications . 20

4.2 Obfuscation Types . 21

4.3 Numbers of Inlined and Outlined Methods 21

4.4 Obfuscation Type Groupings . 22

5.1 Recall for Obfuscation Type Groupings T6, T7 and T6+T7 on RQ1 Apps 29

5.2 Recall for Obfuscation Type Groupings G6-G8 on RQ2 Apps 30

5.3 Performance of SEMEO on Obfuscation Type Groupings G6-G8 on RQ1

Apps (Seconds) . 31

5.4 Performance of SEMEO on Obfuscation Type Groupings G6-G8 on RQ2

Apps (Seconds) . 31

7.1 Recall of FSquaDRA Using RQ1 Apps 38

7.2 Recall of FSquaDRA Using RQ2 Apps 38

7.3 Recall Results (%) Achieved by SEMEO and FSquaDRA When Apply-

ing ProGuard on Obfuscation Type Grouping G1 and G5 40

7.4 Analysis Times (Seconds) Required by SEMEO and FSquaDRA When

Applying ProGuard on Obfuscation Type Grouping G1 and G5 40

www.manaraa.com

1

Chapter 1

Introduction

Code obfuscation is a technique commonly used to render code difficult for humans

or analysis software to comprehend. Traditionally, developers used obfuscation to

protect code in its role as intellectual property. For example, most apps that can be

downloaded from Google Play are obfuscated by ProGuard [17]. However, increas-

ingly, obfuscation is also being used by malware authors to hide malicious payloads

through a process known as “repackaging” [42]. In repackaging, a legitimate applica-

tion is modified by adding code that performs malicious behavior. The application

is then obfuscated to make it difficult to locate the malicious code [6]. Currently,

repackaging (including its use of obfuscation) is the leading approach employed to

create Android malware [18]. In 2015, 2.3 million new malicious apps were uncovered

– a rate of one new malware every 13 seconds [14]. To combat malware effectively,

security analysts need techniques that can efficiently and effectively detect repackaged

malware. Because both benign and malicious apps are now commonly obfuscated,

these techniques must be able to cope with code obfuscation. In addition, analysts

need techniques that can effectively identify the locations of malicious code within

repackaged malware so that they can perform additional analysis to understand that

www.manaraa.com

2

code’s behavior and mitigate its effects. To accomplish these two goals, such tech-

niques must be able to handle sophisticated classes of obfuscation techniques including

code injection, code reordering, function indirection, function inlining and function

outlining [34].

Unfortunately, the most recent approaches presented for detecting repackaged

malware are not effective at identifying locations of malicious code. For example,

DroidMoss is effective at detecting repackaged malware. It has been used to inves-

tigate multiple market places for repackaged apps. The approach is based on fuzzy

hashing [41]. However, it is not effective when obfuscation techniques are used. Zhang

et al. [39] handle obfuscation by relying on high-level interconnections among user

interfaces (UIs), and Zhauniarovich et al. [40] use resource usage within the ana-

lyzed apps to detect differences between an original app and a suspected repackaged

app. Through reliance on UI interconnections and resource usage, these approaches

cope successfully with code obfuscation because they do not rely on code-level birth-

marks [28, 35] to perform detection. Instead, they relies on other birthmarks to detect

behavioral differences at the UI or resource usage levels. As such, they are effective

at detecting repackaged apps that are resource, UI, and event intensive. They are

ineffective, however, if the malicious code affects only functionalities and does not

cause UI or resource usage to change.

One way to render the process of analyzing repackaged malicious code more ef-

fective and efficient is to identify, from among all obfuscated code segments, those

that are semantically equivalent to the original, unobfuscated code. The code thus

identified does not need to be further analyzed, so this allows analysts to focus

on the code that remains. To accomplish this goal, researchers and practitioners

have attempted to apply deobfuscation techniques to obfuscated methods, and then

use “differencing” techniques to compare the deobfuscated versions to the originals

www.manaraa.com

3

(e.g., [3, 4, 5, 15, 16, 26]; Chapter 8 discusses this related work). This approach, how-

ever, has weaknesses. First, increasingly sophisticated obfuscation types are being

created, such as those that alter program structure, and these can hobble deobfus-

cators (Chapter 2 discusses this further). Second, even when deobfuscators are able

to function, they do not necessarily retrieve code matching the original code; instead

they focus on re-engineering code into a format that is more easily understood by

engineers.

In this thesis we explore an alternative approach. We present SEMEO, an ef-

fective and efficient technique for identifying methods in an obfuscated application

that are semantically equivalent to methods in an original application. The remain-

ing methods are potentially non-equivalent and analysts can focus on those. Our

approach differs from prior approaches in that, to our knowledge, it is the first to

attempt to directly identify (without first deobfuscating) obfuscated methods in An-

droid apps that are semantically equivalent to original non-obfuscated methods. SE-

MEO also handles a broad range of complex and widely used obfuscation techniques;

techniques that are currently being employed by authors of malware on Android apps

in particular.

We present the results of an empirical evaluation assessing the efficiency and ef-

fectiveness of SEMEO, in which we applied it to nine Android apps of varying com-

plexity. Our evaluation reveals that the approach can achieve between 76% (when

five obfuscation types are compositely applied) and 100% (when one or two types

are applied) recall with respect to the numbers of obfuscated methods. Given a re-

call of 76%, analysts need to apply deobfuscation and further analysis techniques

only to the remaining 24% of the methods. In addition, modified methods misiden-

tified as semantically equivalent can be particularly damaging to security analysis as

they may be overlooked by analysts. In our empirical study, however, our approach

www.manaraa.com

4

achieved 100% precision (i.e., there was no misidentification of non-equivalent meth-

ods as equivalent) in all cases, even though each app considered was obfuscated in

325 different ways.

We also present the results of three additional empirical studies. In the first, we

compare SEMEO to FSquaDRA, an existing tool for detecting repackaged apps,

and we find that SEMEO is much more effective. In the second study, we apply a

second layer of obfuscation to the apps studied in our initial evaluation using Pro-

Guard; and our results show that even in this case, SEMEO remains highly effective,

while continuing to outperform FSquaDRA. In the third study, we apply SEMEO

to a repackaged, malicious version of the non-trivial real-world app, Pokémon Go,

and again we find that SEMEO is effective.

The remainder of this thesis is organized as follows. Chapter 2 provides back-

ground information on Android Dalvik instructions and obfuscation techniques. Chap-

ter 3 describes SEMEO in detail, including its overall analysis workflow and detailed

algorithms for each of its steps. Chapter 4 describes our empirical study and an-

swers three research questions about our approach. Chapter 6 provides additional

discussion of our results. Chapter 7 presents results of our three additional empirical

studies. Chapter 8 discusses related work, and Chapter 9 concludes.

www.manaraa.com

5

Chapter 2

Background

We next provide background information on the Android Runtime System, the DEX

instructions it relies on, and common obfuscation methods.

2.1 The Android Runtime System and DEX

Instructions

The Android software system consists of four layers: a Linux kernel, Libraries, an

Application Framework, and Applications. Android apps use either the Dalvik virtual

machine (VM) or Android Runtime (ART) environment to execute code in DEX

format.

DEX code is a register-based machine language. Each DEX method has its own

predefined number of virtual registers; these registers correspond to variables that can

store primitive types and object references. The execution engine stores the states of

method registers in an internal execution state stack, with the most current method’s

register on top of the stack. Because all the operations and computations performed

are register-based, all values must be loaded from and stored into class fields [2].

www.manaraa.com

6

Figure 2.1 presents an example of Android DEX instructions from the Android app

Dragon, obtained by applying a dexdump tool. The first line contains the pack-

age name (com.example.dragon), class name (MainActivity), and method name

(checkHiTone). This strictly follows JVM specifications[37]. Subsequent lines display

the offsets of each DEX instruction, then detailed instructions and register informa-

tion. The code shown first obtains a field from Lcom/example/dragon/Conditions

and stores it in register v0 via an sget. The code then compares the contents of

register v0 to the contents of register v1. A detailed explanation of DEX instructions

is provided in the Android specification [2].

Figure 2.1: Examples of DEX instructions

2.2 Obfuscation Methods

Rastogi et al. [34] classify common obfuscation techniques into three categories:

(1) trivial obfuscations, which can be easily detected by most antivirus tools; (2) DSA

obfuscations, which can be detected by static analysis techniques; and (3) NSA ob-

www.manaraa.com

7

fuscations, which cannot be detected by static analysis. In this thesis we focus on

DSA obfuscations. According to Rastogi et al. [34], most commercial antivirus tools

cannot cope with DSA obfuscations, as this class of obfuscations typically changes

the control flow and data flow of programs. We focus further on five specific classes

of DSA obfuscations: junk code insertion, code reordering, method indirection, func-

tion inlining and function outlining [8, 22, 23, 32, 38]. These five classes of DSA

obfuscations are those most commonly found in practice [34].

Junk code insertion involves the insertion of unnecessary code into an app. The

additional code may execute but does not affect the behavior of the program.

The three most common types of junk code insertion are nop insertion, branch

insertion and garbage code insertion. Nop insertion simply adds sequences of nop

instructions to the code; this obfuscation type is easy to detect and remove [23].

Branch insertion introduces branch instructions based on simple templates; for ex-

ample, branch predicates can be added that are always false so that the branches are

never actually taken. This obfuscation type may create additional dependencies in

control flow analysis [38]. Garbage insertion is also called dead code insertion; this

involves inserting instructions (other than nop instructions) that has no effect on the

semantics of the code [32].

Code reordering involves changing the execution order of statements or blocks of

code. This obfuscation type can be difficult to detect and remove. Because changing

the execution order of statements or blocks of code can affect the information flow in

a program it can also render it difficult to determine whether code thus obfuscated is

semantically equivalent to the original code. Figure 2.2 illustrates an application of

code reordering to the code of the Dragon app originally shown in Figure 2.1. The

original code tests whether the value in v0 is less-than-or-equal-to 2 in Lines 2 and 3,

www.manaraa.com

8

Figure 2.2: An illustration of code reordering

then tests whether the value of v1 is greater-than-or-equal-to 19 in Lines 7 and 9.

The reordered code reverses the order of these tests.

Method indirection inserts additional calls into an app, and is an obfuscation type

designed to manipulate call graphs. With this approach, a given method call (e.g.,

m0 → m1) can be converted to a call to a previously non-existing method (e.g., m2)

that then calls the originally called method; (e.g., yielding m0 → m2 → m1). The

technique is applicable to calls to framework libraries as well as calls to methods

within an app [22].

Function inlining replaces method calls with the actual body of called methods.

Normally used by compilers for optimization, this obfuscation type breaks abstraction

boundaries created by the programmer [8].

Function outlining is the inverse of function inlining; it involves decomposing a

function into multiple smaller functions. This process has been used (non-maliciously)

to remove duplicate code in large programs [22]; in the context of obfuscation, its

strength lies in requiring interprocedural analyses to perform deobfuscation.

www.manaraa.com

9

Chapter 3

Semantic Equivalence Analysis of

Obfuscated Code

We now present our approach for Semantic Equivalence Analysis of Obfuscated Code

(SEMEO). The key objective of SEMEO is to provide an efficient technique for

determining whether a method that has been obfuscated is semantically equivalent to

the original version of the method. Because a repackaged app typically includes only a

small set of methods that have been semantically altered to enact malicious behavior,

the majority of that app’s obfuscated methods will be equivalent to the original

unmodified methods. If our approach is effective, it should be able to identify a

larger percentage of these semantically equivalent methods, allowing security analysts

to focus on methods that cannot be conclusively identified as semantically equivalent.1

Figure 3.1 provides an architectural overview of SEMEO’s workflow. An analyst

provides two apps to SEMEO: an app P and a version P ′ of P that is suspected

to have been repackaged. SEMEO compares methods in P ′ (m′j) to methods in P

(mi). Note, however, that the mapping of methods in P ′ to methods in P may not

1In general, the problem of determining the semantic equivalence of two programs is undecid-
able [19], so our approach is necessarily an heuristic.

www.manaraa.com

10

m0 in
P

m0’ in
P’

Generate
Graphs

(e.g., control
flow, data

flow, method
instruction)

Perform
Semantic

Equivalence
Analysis

Analysis
Report

with
recall

SEMEO Framework

Figure 3.1: Architectural overview of SEMEO

be one-to-one due to the use of obfuscation techniques that merge methods, extract

new ones, or make it difficult to determine which obfuscated methods correspond to

which original methods. Thus, the approach must account for this.

For example, suppose that P contains two methods, (m0 and m1), and suppose

that P ′, a repackaged version of P , contains three methods (m′0, m
′
1, and m′2). Sup-

pose that the additional method has been created by the use of a method outlining

obfuscation technique that splits m1 into m′1 and m′2. SEMEO begins by comparing

m0 to m′0. If they are not found to be semantically equivalent, it then compares m0

to m′1, and so on. If, on the other hand, they are found to be semantically equivalent

they are marked as such. SEMEO does not now need to visit m0 again; instead

it compares m1 with m′1. In this case in which the two modules are not semanti-

cally equivalent; m′1 now calls m′2 so the analysis needs to consider both methods

(m′1 +m′2) and then evaluates whether the combined result is semantically equivalent

www.manaraa.com

11

to m1. Similarly, if inlining is used to obfuscate two methods, there may be a situa-

tion in which two or more methods in P are, together, semantically equivalent to a

method in P ′.

When SEMEO completes its analysis, it outputs a list of methods that have been

determined to be semantically equivalent and not equivalent, and a percentage indi-

cating what proportion of the methods were determined to be semantically equivalent.

In the rest of this section we describe each step of the process in turn.

3.1 Preliminary Information

SEMEO operates on DEX instructions, and its goal is to identify DEX instructions

that can potentially change the semantic meaning of an app that uses them. Thus,

before presenting our approach we present information on these instructions. Ta-

ble 3.1 shows categories and examples of DEX instructions, derived from the Android

Specification [2]. Some of these classes of instructions cannot alter the semantics of

the app; these are shown in plain font at the end of the table.

As an example of an instruction that can change the semantics of an app, if a

cybercriminal modifies a method by injecting a few read instructions such as iget,

these instructions would perform field accesses and store the retrieved values into value

registers. These operations, in effect, overwrite these value registers with new and

potentially incorrect values, thus infecting the app. These values, however, remain

dormant until they are propagated via operations that use them as operands or store

them in other registers (e.g., move) or object fields (e.g., iput) that can be used

by others. We refer to instructions that can cause infection and propagation to be

“suspicious DEX instructions”, and these are the targets of our analysis. Other

instructions, shown in italics in Table 3.1, can also change the semantics of the app:

www.manaraa.com

12

Table 3.1: DEX Instruction Categories

Instruction Category Examples

Invoke invoke static, invoke virtual
Read iget, aget, sget
New new array, new instance

Array fill new array, fill array data
Write iput, aput, sput
Move move

Arithmetic op binary, unary operation
Branch if, go to, switch
Return return

Comparison if, ifz, cmp
Constant const wide, const, const string

Exception throw
No op nop

Casting check cast, instance of
Synchronization monitor enter, monitor exit

the write instruction, the new operation, and arithmetic operators are examples.

Notice that we classify throw instructions as one of those that cannot change the

semantics of a method. Exception handling occurs at runtime and modifying code by

adding throw instructions does not always change control flow – a change can occur

only if the exception occurs and is caught. Due to the dynamic nature of the throw

instruction, we consider it to be an instruction that does not change the semantics of

the code as part of our static analysis.

SEMEO compares a pair of apps at the method level. To support the necessary

analysis we created a tool to construct data flow and control flow graphs for the

instructions in each method, and method graphs to help track method calls. Data

flow are generated by using reaching definition algorithm, and the flow information

are based on def-use pair. We also created tools to construct class graphs and field

graphs (discussed later in this chapter). While it is possible to use existing program

analysis tools such as Soot to perform the required analyses, we chose to create

www.manaraa.com

13

tools that work directly with DEX to minimize the amount of translation that must

be performed and can potentially add another layer of complication to the obfuscated

code (e.g., DEX to Jimple for Soot) [25]. We provide a simple illustration of our

analysis graphs in Figure 3.2, which shows an instruction graph representing a method

with data flow information.

Figure 3.2: Example of an instruction graph with data flow information

3.2 Algorithms

We now describe the algorithms that comprise SEMEO. Algorithm 1 shows the

procedure that is applied to a pair of methods Mi and Mj. In Line 2, the algorithm

determines whether a method semantically equivalent to Mi has been previously

found. It does this using a map bit to represent the status for each method. If the

map bit for Mi is set, a semantically equivalent method in P ′ has already been found.

www.manaraa.com

14

Algorithm 1 Equivalence Analysis

1: procedure CheckEquivalence:(Mi,Mj′)
2: if (CheckMapBit(Mi) == false) then
3: Gi← ExtractDataFlow(Mi)
4: Sum1← ExtractInstructionSummary(Gi)
5: if (CheckMapBit(Mj′) == false) then
6: Gj ← ExtractDataFlow(Mj′)
7: Sum2← ExtractInstructionSummary(Gj)
8: if SummariesMatch(Sum1, Sum2) then
9: SetMappingFlag(Mi,Mj′)

10: end if
11: end if
12: end if
13: end procedure

If it is not set, the analysis continues (Line 3). The algorithm analyzes the data flow

graph for Mi (Line 3) and produces its instruction summary (Line 4).

Procedure ExtractInstructionSummary (called in Lines 4 and 7) traverses the

data flow graphs for each of the methods being considered using the DFS visitor

in the Boost graph library, a graph processing library available on most computing

platforms [1]. By using DFS visitor, SEMEO transverse each node in data flow

graph from entry point and check the suspicious instruction. Except ENTRY, each

node has an incoming edge with registers based on the data flow information. If

that incoming register is not in the path summary, then this incoming register will

be added into path summary. Path summary is a map to record the register and

its dex operation pair for each path. After that, SEMEO will check each node for

suspicious instruction, and update the path summary. When it visits the last node

of each path, it will combine current path summary into instruction summary, then

clear the current path summary and visit another new path. By running DFS visitor,

SEMEO traverse all paths on the data flow, extracting suspicious DEX instructions

and constructing an instruction summary for each method. As such, each instruction

summary contains only suspicious DEX instructions. Each instruction consists of

www.manaraa.com

15

three components: an opcode, registers and a constant value.

The information contained in an instruction summary represents the behavior of

a method but not its full structure. Each suspicious DEX instruction is a node in the

summary. Because DEX is a register-based instruction set, data flows via registers

and each flow of data can be represented as an edge between two nodes. Because

method arguments enter a method via entry registers set up by the caller, there are

no assignment edges coming into entry registers.

Turning again to the instruction graph in Figure 3.2, an argument is passed in to

the method through register v2, as indicated by the keyword ENTRY. There are three

instructions in this graph, invoke-static, move-result-object, and invoke-virtual.

All three instructions are classified as “suspicious DEX instructions” and thus they

are included in the summary.

In Line 5, the algorithm checks whether Mj′ has already been determined to be

semantically equivalent to an original method. If not, the algorithm extracts its data

flow graph and associated instruction summary (Lines 7-8). Now, both summary sets

are compared (Line 8) and if they are semantically equivalent, a map bit is set for

(Mi, Mj).

The analysis of an instruction summary proceeds as follows. First, the analysis

looks for invoke instructions in the summary. In the DEX instruction set, invoke

is used to perform method calls. Obfuscation techniques such as method indirec-

tion, function inlining and function outlining use invoke instructions to perform

obfuscation by making additional method calls. To handle this situation, our tech-

nique, as shown in Algorithm 2, performs an interprocedural analysis of the caller

and callee methods to perform summary inlining. For each previously computed

summary, whenever there is an invoke instruction (Line 3), the algorithm visits the

callee method (Line 4) and checks whether that method has ever been inlined with

www.manaraa.com

16

Algorithm 2 Summary Inlining
1: procedure inlining(Sum, Inlined)
2: for each instruction Ins in Sum do
3: if Ins is “invoke” then
4: M ← GetCalleeMethod(Ins)

5: if NotInList(M ,Inlined) then
6: Inlined← Inlined ∪ M
7: G← ExtractDataFlow(M)

8: Sumi ← ExtractInstructionSummary(G)

9: Sum← Sum ∪ Sumi

10: Sum← Sum− Ins
11: end if
12: end if
13: end for
14: end procedure

the caller’s summary (Line 5). If it has, the analysis has been done previously and

the algorithm terminates. If it has not, the algorithm uses the DFS visitor method

to compute an instruction summary for that callee method (Lines 5 to 8). Finally, it

merges the result with the summary of the caller method (Line 9). This process also

applies when a callee method makes calls to other methods. After merging summary

information, the algorithm removes the invoke instruction from the caller’s summary

(Line 10). This process is repeated until there are no more invoke instructions in

either the caller’s or callee’s summaries.

In the scenario presented earlier in our example, method outlining has been used

to obfuscate P to create P ′. In this case, m1 has been obfuscated to create m′1 and m′2

through outlining. Algorithm 2 first analyzes the summary of m′1 to identify invoke

instructions. In this case, there is one invoke call to m′2. Since this is the first time

this summary has been analyzed, the algorithm creates a summary of m′2 and merges

it with that of m′1. The combined summary is then compared to that of m1.

After performing summary inlining, SEMEO compares the summaries to de-

termine whether they are semantically equivalent. The comparison process applies

www.manaraa.com

17

several heuristics. For example, by using the instruction summary, the algorithm can

remove all junk code that has been inserted without changing the semantics of the

program. This is because our “suspicious DEX instructions” already cover a wide

range of semantics-changing instructions. However, considering just these suspicious

instructions is not sufficient. Obfuscation approaches such as those that change loop

structures would cause the instructions and data-flow patterns to change. To handle

this, we also refer to common loop patterns and look for cases where a pattern has

been changed to another equivalent pattern. We then perform template matching to

see if the obfuscation is simply changing the loop structure. For example, for loops

and while loops may have the same semantic meanings in different flow structures. To

handle this, by traversing the data flow in both situations, our DFS visitor will check

all possible conditions and include suspicious DEX instructions into the instruction

summary until it reaches a fixed point. As our instruction summary only involves

in register information and DEX instructions, the structural difference will not affect

our result.

Sum and Sumi are lists of maps, where each map stores the register and suspicious

DEX instructions from the previous DFS visitor execution. The next step is to

compare both instruction summaries. To handle code reordering, we sort Sum and

Sumi alphabetically in terms of their DEX instructions before beginning to compare

them. Instruction reordering is difficult to analyze if we retain the order of the

instructions as found in the summary. Sorting takes care of this concern as order is

no longer preserved based on when instructions appear in the method. Instead, we

preserve relationships through data flow information. After comparing instructions

and data flow information, our approach analyzes constant values, which may provide

additional insights as some constant values including strings may not change as they

provide specific information for the methods (e.g., URL strings, constant integers).

www.manaraa.com

18

After visiting all of the methods in both apps, SEMEO examines the analysis

result obtained for the obfuscated app and then calculates the percentage of methods

in the obfuscated app found to be semantically equivalent to those in the original

app. If this number is less than 100%, SEMEO outputs the names of all methods in

the obfuscated app that are not found to be semantically equivalent to methods in

the original app.

The complexity of the comparison process as represented in Algorithm 1 is O(n2)

in the worst case, and O(n) in the best case, where n is the larger of the number of

methods in P and P ′.

www.manaraa.com

19

Chapter 4

Empirical Study

To evaluate SEMEO we conducted an empirical study, considering the following

research questions.

RQ1. How effective is SEMEO at detecting whether an app and a semantically

equivalent obfuscated version of that app are in fact semantically equivalent?

RQ2. How effective is SEMEO at identifying repackaged methods in obfuscated

apps?

RQ3. How efficient is SEMEO?

4.1 Objects of Analysis

To answer these research questions, we wished to obtain several Android apps of

varying complexities, for which Java source code and build procedures were available.

Ultimately, we selected nine apps; Table 4.1 provides details. Column 1 provides an

app number that is used later, Column 2 provides the app name, Column 3 lists the

number of methods in each app, and Column 4 lists the number of lines of code.1 (We

1Lines of code were counted manually by adding up the total lines of source code for each file,
as reported in the Eclipse IDE.

www.manaraa.com

20

Table 4.1: Applications

Modified
App Name Methods LOC Methods

1 PicViewer 21 139 2
2 CalcC 63 462 6
3 DeviceAdmin2 161 1675 20
4 Orienteering 697 10246 20
5 SysMon 752 3490 18
6 Pondl 1573 20664 99
7 YARR 2027 1224 57
8 NewsCollator 2935 3535 19
9 TextSecure 7218 37486 243

discuss the rightmost column later.) These apps were created by DARPA to support

their Automated Program Analysis for Cybersecurity (APAC) program [13]. As the

table shows, the apps ranged in size from 21 to 7218 methods, and from 139 to 37,486

lines of code as reported by Eclipse IDE.

We considered the seven DSA obfuscation types discussed in Chapter 3; these are

listed in Table 4.2, where we provide a “Type ID” for use in subsequent references, and

the name of the obfuscation. Most of these obfuscation types are known to be difficult

for deobfuscation tools to handle. To apply the first five obfuscation types (T1-T5)

we used Alan [27], an Android malware obfuscation engine capable of applying one

or more of these types to a given app in any order. Alan can be configured to

obfuscate only a portion of an app or the entire app. We chose to obfuscate entire

apps to create a scenario similar to the one created by malware authors when they

repackage apps.

We were unable to find any tool support for the function inlining and outlining

obfuscation types (T6 and T7), so for these we enlisted the help of an undergraduate

student who at that time had no knowledge of our approach for determining semantic

equivalence. Where inlining is concerned, we instructed the student to inline string

www.manaraa.com

21

Table 4.2: Obfuscation Types

Type ID Obfuscation Name

T1 insert nop operation
T2 insert branch
T3 insert garbage
T4 reorder code
T5 method indirect
T6 function inlining
T7 function outlining

operations and the contents of called methods. Where outlining is concerned, we

instructed the student to group branch condition bodies into other methods and to

move some parts of functions into other small functions. The student applied these

modifications to randomly selected methods from each of the apps. We then consid-

ered instances in which just inlining, just outlining, or both were applied. Table 4.3

provides information on the numbers of methods inlined and outlined. The table

provides the app number and name in Columns 1 and 2, together with the number of

methods on which inlining, outlining, and both (“hybrid”) were performed for each

app (Columns 3 through 5, respectively).

Table 4.3: Numbers of Inlined and Outlined Methods

Inlined Outlined Inlined+Outlined
App Name Methods Methods Methods

1 PicViewer 2 2 2
2 CalcC 6 6 6
3 DeviceAdmin2 10 16 10
4 Orienteering 20 20 20
5 SysMon 10 10 10
6 Pondl 10 10 10
7 YARR 2 2 2
8 NewsCollator 2 2 2
9 TextSecure 10 10 10

www.manaraa.com

22

Alan is able to apply obfuscation types T1 - T5 individually or in any combina-

tions, so we chose five different methods for grouping obfuscation types (Table 4.4).

Grouping G1 considers single obfuscation types; since there are five obfuscation types

this yields cases in which just obfuscation type T1 is applied, cases in which just obfus-

cation type T2 is applied, and so forth. Grouping G2 considers all pairs of obfuscation

types; “T12” refers to the case in which obfuscation type T1 is applied followed by

obfuscation type T2. The order in which obfuscations are applied also matters, so

we considered all sequences of pairs (e.g., we also considered “T21”). In the case

of Grouping G2, then, a total of 20 different sequences of obfuscations are applied.

Similar reasoning applies to Groupings G3, G4, and G5, which involve all possible

sequences of applications of all possible combinations of three, four, and five obfus-

cation types, respectively. For function inlining and outlining, we applied each singly

and applied both together; thus, there are three different sequences of applications of

these obfuscation types, which we refer to as G6 through G8.

Table 4.4: Obfuscation Type Groupings

Grouping Example Grouping and Sequence Number

G1 T1, T2, T3, T4, T5 5
G2 T12, T23, T34, T45, T21... 20
G3 T123, T345, T251, T231... 60
G4 T1234, T1245, T4213... 120
G5 T12345, T12453, T45213... 120
G6 T6 1
G7 T7 1
G8 T6+T7 1

To address RQ2 we require repackaged apps. Ultimately, when considering mal-

ware, we are interested in methods into which malicious code has been injected, and

to which obfuscations have then been applied. Finding suitable malware samples

that meet our requirements for objects of study, however, is challenging. For ex-

www.manaraa.com

23

ample, many malware samples that have been used in academic research are quite

old, and they often are not available with source code, which is needed to perform

obfuscation. In addition, we also require the source code of the original as well as

the repackaged apps for our studies. Finally, finding numbers of modified methods

containing malware that are adequate to support any quantitative conclusions about

the effectiveness of our approach would likely not be possible.

For these reasons, for the purpose of this initial study, we chose to modify our

objects of analysis ourselves. (In Chapter 7 we present a case study in which we apply

our approach to an app that does contain actual malware). This gave us the ability to

use versions of methods that have been semantically modified in diverse manners, in

numbers sufficient to support quantitative conclusions. We asked an undergraduate

student to perform this task. To do this, for each app, prior to applying any obfus-

cation types to the apps, he randomly selected a number of methods and manually

modified their code. Modifications involved relatively simple but provably semantics-

affecting changes such as negating branch conditions, changing input parameters,

removing method contents, and changing return type. While these modifications do

not involve insertions of malicious code, we argue that such code would most likely

be more complicated than these modifications; thus, if SEMEO is able to correctly

deduce that our modified methods are indeed semantically different from the original

methods, it is likely to be able to do so for methods involving actual malicious code,

where the changes are more extensive. The numbers of modified methods created

and used in our study are shown in the rightmost column of Table 4.1.

www.manaraa.com

24

4.2 Variables and Measures

4.2.1 Independent Variables

Because SEMEO may perform differently on different obfuscation type groupings

and we wish to assess such differences in performance, we treat obfuscation type

groupings as an independent variable. As noted earlier, our groupings consider each

of the obfuscation types separately, while also considering all possible sequences of

the obfuscation types that are supported by Alan.

4.2.2 Dependent Variables

As dependent variables, we chose metrics appropriate to our research questions, as

follows.

Recall. For RQ1 and RQ2 we measure recall, which represents SEMEO’s ability to

identify semantically equivalent methods. Recall is calculated as mseq

mtotal−mmod
, where

mtotal represents the total number of methods in an app; mmod represents the number

of modified methods in the app; and mseq represents the number of methods in the

app identified as semantically equivalent. In the case of RQ1, we use apps that have

been obfuscated but not modified, so in this case mmod equals 0. For RQ2 recall is

calculated using the same equation but in this case the apps have been modified, so

mmod is non-zero.

Precision. Precision represents SEMEO’s ability not to mis-identify methods as

semantically equivalent that are not in fact semantically equivalent. Modified meth-

ods mis-identified as semantically equivalent can be particularly damaging to secu-

rity analysis as they may be overlooked. For RQ1, where we do not have modified

methods, the notion of precision does not apply. For RQ2, however, we do have

www.manaraa.com

25

modified methods, so in that case we also calculate precision. We calculate precision

as mseq−mneq

mseq
, where mseq represents the number of methods in the app identified as

semantically equivalent, and mneq represents the number of modified methods that

have been mistakenly identified as semantically equivalent to methods in the original

app.

Efficiency. We calculate efficiency by measuring the time required by SEMEO to

perform its analysis. We use seconds to report our results. The measurement begins

at the time we load the two apps and ends when the analysis result is reported.

4.2.3 Study Operation

To address RQ1, we use SEMEO to compare the obfuscated apps with the original

apps, and note how many methods in the obfuscated apps are flagged as semantically

equivalent to the original ones. To address RQ2 we apply the same process, but in

this case we also note how the results relate to methods that were actually modified.

To address RQ3 we follow the same process as for RQ1 and measure the amount of

time needed to perform the analysis.

To perform this study we used a MacBook Pro running OS X El Capitan version

10.11.2, with an 8GB memory and a 2.5GHz Intel Core i5. The performance times

we gather are from within this environment.

4.3 Threats to Validity

External validity concerns the extent to which results may generalize. Where exter-

nal validity is concerned, we have studied only nine apps, but they do represent an

important sub-class of the apps that malware authors target, and they do vary in

size and complexity. Further, two of our obfuscation types, inlining and outlining,

www.manaraa.com

26

were applied by hand. Additional studies are needed to address these threats. We

also do not consider actual malware, instead using semantic modifications made by

a programmer. One of the further studies we present in Chapter 7, however, helps

address this threat by considering an application that does contain actual malware.

Internal validity concerns whether the observed results can in fact be attributed

to differences among the choices of independent variables. Where internal validity

is concerned, errors in the tools we rely on could affect our results, but we have

attempted to rigorously test them.

Construct validity concerns the extent to which the measures utilized capture

the true costs and values associated with an approach. Where construct validity is

concerned, we measure precision, recall, and analysis time, but we do not collect any

measures related to actual engineer effort.

www.manaraa.com

27

Chapter 5

Results

We now report the results of our empirical evaluation, discussing each research ques-

tion in turn.

5.1 RQ1

RQ1 concerns the effectiveness of SEMEO at detecting whether an app and a seman-

tically equivalent obfuscated version of that app are in fact semantically equivalent.

Figure 5.1 presents boxplots showing the distribution of recall values achieved by SE-

MEO for obfuscation type groupings G1 through G5 on all nine apps. In the figure,

the x-axis organizes the data per app. For each app, five boxes display the data for

obfuscation type groupings G1 through G5, respectively. Thus, the leftmost box in

each set of five represents App 1 with obfuscation type grouping G1, the next box to

the right represents App 1 with obfuscation type grouping G2, and so forth. Each

individual box represents the data for a given obfuscation type grouping across all

sequences used for that grouping. That is, T12, T21, T31, and others are all part of

G2, and their values on App 1 are all included in the data from which the second box

www.manaraa.com

28

60

80

100 + + + + +

+ + + + + + + + + + + + + + +
+ + + + +

+ + + + +

+ + + + +
+

+ + + +
+ + + + +

A1 A2 A3 A4 A5 A6 A7 A8 A9

(%)

Figure 5.1: Recall for obfuscation type groupings G1-G5 on RQ1 Apps

from the left was generated). The y-axis reports recall percentages, computed using

the equation provided in Section 4. The mean value within each group is denoted by

a “+”.

As the boxplots illustrate, for each app, as obfuscation complexity increases, mean

recall also decreases. For obfuscation type grouping G1, in seven of nine cases there

is little variance in results, and the mean recall values are between 95% and 100%,

indicating that with single obfuscations applied, SEMEO is highly effective at iden-

tifying semantically equivalent methods. Even when the obfuscations applied are the

most complex (obfuscation type grouping G5) the mean recall exceeds 80% on eight

out of nine apps. The lowest mean recall (76%) occurs on App 5 for obfuscation type

grouping G5. Larger variance in results occurs most often on obfuscation type group-

ings G2 and G3; in five of nine cases these are the only obfuscation type groupings

that display large degrees of variance. This suggests that when only two or three

types of obfuscations are applied they can interact in a wider variety of ways that

impact SEMEO’s performance more than when larger numbers are applied.

For function inlining and outlining (G6-G8), the recall data is presented in Ta-

ble 5.1. (Boxplots are not appropriate in this case, because we do not use multiple

permutations of obfuscation technique orderings in this case, and thus do not have a

distribution of data points). For these obfuscation type groupings, recall ranges from

80.56% to 100%.

www.manaraa.com

29

Table 5.1: Recall for Obfuscation Type Groupings T6, T7 and T6+T7 on RQ1 Apps

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9 Average

G6 90.48 95.45 94.41 95.25 100 89.92 100 99.52 83.33 94.26
G7 91.3 95.52 90.96 94.41 99.61 95.77 99.86 99.9 83.72 94.56
G8 82.61 80.56 91.72 94.24 99.61 91.14 99.95 99.8 83.22 91.43

SEMEO achieved average recall values ranging from 91.43% to 94.56%. The

somewhat lower recall values in this case attest to the difficulty of determining se-

mantic equivalence in the presence of substantial changes in program structure.

5.2 RQ2

RQ2 concerns the effectiveness of SEMEO at identifying repackaged methods in

obfuscated apps. We apply all seven obfuscation types listed in Table 4.2 in RQ2 as

well, under the same sets of obfuscation types groupings.

Figure 5.2 reports recall values for obfuscation type groupings G1 through G5.

SEMEO achieved average levels of recall ranging from 69% to 100%. For App 2,

App 3, App 5, and App 6, the recall values for RQ2 are lower than those in RQ1.

The reductions range from 20% for App 2 to about 10% for the other apps.

Table 5.2 displays the recall values for SEMEO for obfuscation type groupings

G6-G8. Again, changes in program structure make determining semantic equivalence

more challenging. As shown, the average recall value for each of the three obfuscation

type groupings is reduced by 5% compared to that of the corresponding obfuscation

type groupings in RQ1. The greatest decrease in recall occurs on App 2, which is a

small app.

Turning to precision, SEMEO achieved 100% precision on all apps repackaged

with all obfuscation types and obfuscation type groupings. This means that none of

the modified methods were mistakenly identified as semantically equivalent.

www.manaraa.com

30

60

80

100 +
+

+
+

+

+ + + + +

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+
+

+
+

+

+
+

+
+

+

+
+

+
+

+ + + + + +

A1 A2 A3 A4 A5 A6 A7 A8 A9

(%)

Figure 5.2: Recall for obfuscation type groupings G1-G5 on RQ2 Apps

Table 5.2: Recall for Obfuscation Type Groupings G6-G8 on RQ2 Apps

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9 Average

G6 84.21 48.61 88.98 98.23 99.18 82.45 81.64 87.5 90.69 84.61
G7 72.73 70.49 77.24 95.7 97.08 81.46 80.84 86.98 90.69 83.69
G8 72.73 48.53 80.56 98.08 97.61 80.59 80.84 86.94 90.69 81.84

5.3 RQ3

RQ3 concerns the efficiency of SEMEO. Figure 5.3 and Figure 5.4 show mean per-

formance values for SEMEO, gathered on runs with the apps used for RQ1 and RQ2,

for the five obfuscation type groupings G1-G5. In both figures, the results for Apps 1

through 7 are similar. The results for Apps 8 and 9 show increasing analysis times.

0

10000

20000

30000

40000

50000

+ +
+

+ + +

A1 A2 A3 A4 A5 A6 A7 A8 A9

Figure 5.3: Performance of SEMEO on obfuscation type groupings G1-G5 on RQ1
Apps (seconds)

Table 5.3 and Table 5.4 show the performance values for SEMEO for the inlining,

outlining, and hybrid obfuscation type groupings.

www.manaraa.com

31

0

10000

20000

30000

40000

+ +

+ +
+

+

+

A1 A2 A3 A4 A5 A6 A7 A8 A9

Figure 5.4: Performance of SEMEO on obfuscation type groupings G1-G5 on RQ2
Apps (seconds)

Table 5.3: Performance of SEMEO on Obfuscation Type Groupings G6-G8 on RQ1
Apps (Seconds)

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9

G6 0.27 0.31 0.47 2.14 1.02 125 7.36 26.95 6808.98
G7 0.29 0.29 0.46 2.33 1.07 55.88 9.24 27.24 7113.36
G8 0.57 0.4 0.58 2.47 1.13 117.99 8.09 21.21 6056

Table 5.4: Performance of SEMEO on Obfuscation Type Groupings G6-G8 on RQ2
Apps (Seconds)

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9

G6 0.31 0.57 1.05 3.41 2.71 236.91 403.91 813.11 6570.87
G7 0.38 0.45 0.9 12.15 3.62 246.06 419.63 855.74 6738.51
G8 0.34 0.62 1.29 2.76 3.84 259.06 414.03 818.56 6506.24

As the data shows, SEMEO can be quite efficient when the number of methods

it needs to analyze is of small to moderate size. Only as the number of methods in

an app neared 3000 (App 8) did execution time from 34 seconds to 1267 seconds (21

minutes). In the case of App 9, which has over 7000 methods, the analysis time ranged

from 203.46 seconds to 12693.6 seconds (2.7 hours). Note that SEMEO is much faster

when the pair of original and obfuscated apps to be analyzed are semantically the

same. As shown in Table 5.1, App 7 and App 8 have nearly 100% recall for RQ1.

www.manaraa.com

32

In this case, the analysis times are also quite fast (less than 30 seconds as shown

in Table 5.3) in spite of the presence of over 2000 methods. However, for RQ2 as

shown in Table 5.2, the recall values for App 7 and App 8 decrease to 80% and

86%, respectively, due to the presence of modified methods. In this case, the analysis

time also increases to 400 seconds and 850 seconds, respectively (see Table 5.4).

The performance overhead in these cases arises primarily due to the complexity of

Algorithm 1 (O(n2)).

For RQ2, we report performance results for SEMEO on obfuscation type group-

ings G1-G5 in Figure 5.4. Table 5.4 shows mean performance values for SEMEO

for the inlining and outlining obfuscation type groupings of RQ2. Similar to the case

with RQ1, larger apps experience higher runtime overheads. However, the amount of

time required to perform equivalence analysis on a repackaged app is generally the

same as the time required to analyze the same apps for RQ1.

www.manaraa.com

33

Chapter 6

Discussion

Based on our results, some methods in obfuscated apps are incorrectly deemed by

SEMEO to be non-equivalent to those in the original apps. There are various reasons

behind such misidentifications. First, SEMEO analyzes obfuscation grouping types

G1 and G2 very accurately because these are not as complex as G3, G4, and G5. The

majority of lower recall values occur on groupings G4 and G5, where four and five

layers of obfuscation have been applied. Such high degrees of composite obfuscation

makes analyzing apps for semantic equivalence more challenging.

Our analysis involves register comparisons when comparing the DEX instructions

of two methods. However, when the method inlining and outlining techniques are

used, we require interprocedural analysis. Additional methods can cause the register

assignments performed by the compiler to change. In this case, SEMEO would

report these methods as not semantically equivalent, which means that the apps need

to be further analyzed to verify whether they are indeed semantically different. As

such, our design errs toward being more conservative; however, the recall numbers

still show that the number of methods that must be analyzed represents only a small

fraction of the number of total methods for each app. For example, our largest app

www.manaraa.com

34

has 11,174 methods after obfuscation. Our analysis leaves only 15% of these methods

for analysis.

While SEMEO does mistakenly identify some semantically equivalent methods

as non-equivalent, it did not, in the cases we considered, mistakenly identify modified

methods as semantically equivalent. This means that in these cases, the approach

would not allow modified methods to escape analysis. We also discovered that when

we introduce modified methods that change application semantics, our recall degrades

slightly. This is because these modified methods can affect some superclass and

subclass relationships. Some modifications to global variables in the modified methods

can also affect other methods that share these global variables. These scenarios can

cause SEMEO to identify some equivalent methods as non-equivalent. Still, the

approach filters outs a large portion of equivalent methods, leaving only a small

percentage of methods to be analyzed. The amount of additional overhead spent on

dealing with these complexities is also very small as the reported time for RQ2 is

about the same as the reported time for RQ1, for the same app.

To scale SEMEO to handle larger apps, significant reengineering efforts will be

required. For example, additional heuristics might be able to reduce the complexity

of Algorithm 1. One option is to first sort all the methods based on size to allow

searches to be more localized based on size. Other heuristics that may facilitate faster

searching would be to partition methods based on method signatures, input/output

flows, and the types of calls they make to libraries.

Obfuscation techniques that try to alter library calls can be complex and would

likely affect the semantics of apps. As such, they are not likely to be used so re-

lying on them as a way to help partition similar methods to allow searching to be

applied to smaller data sets or support searching in parallel can reduce the cost of our

approach. Because SEMEO is based on graphs that can be processed by the Boost

www.manaraa.com

35

Graph Library, we also plan to explore existing graph algorithms such as isomorphism

testing [36] that may help reduce the analysis overhead.

www.manaraa.com

36

Chapter 7

Additional Case Studies

In this chapter, we report the results of three additional studies designed to evalu-

ate the accuracy and performance of SEMEO under realistic settings. In the first

study, we compare the accuracy of SEMEO with that of an alternative approach

for detecting repackaged apps. In the second study, we apply SEMEO to detect

semantically equivalent methods when ProGuard, a commonly used commercial

obfuscation tool, is used in addition to our adopted obfuscation methods. In the

third study, we use SEMEO to detect modified methods in a complex, real-world

repackaged malware sample.

7.1 Comparing SEMEO to an Existing

Alternative Technique

We now consider other techniques that can detect repackaged Android applications in

the presence of code obfuscation. We examined ViewDroid [39] and FSquaDRA [40].

ViewDroid uses UI-based birthmarks to help detect differences in UI connections be-

tween an original app and a repackaged app. Unfortunately, ViewDroid is not pub-

www.manaraa.com

37

licly available. FSquaDra uses resource-usage-based birthmarks to detect repack-

aged apps. Specifically, it looks for identical resources that are present in the orig-

inal app and the potentially repackaged app. According to reported results [40],

FSquaDRA is efficient and accurate in detecting repackaged apps. FSquaDRA is

also publicly available. Thus, we compare the performance of SEMEO to that of

FSquaDRA.

Tables 7.1 and 7.2 provide data on the use of FSquaDRA to identify semantically

equivalent methods in the apps used in our initial study for RQ1 and RQ2, respec-

tively. Each app was individually obfuscated with obfuscation grouping types G1, G6,

and G7 (hence, we applied all seven obfuscation types, T1 to T7). Our goal was to

observe whether the underlying analysis approaches used by these two approaches are

sensitive to these obfuscation types. We compared the recall performance of SEMEO

with that of FSquaDRA for these obfuscation groupings.

Recall that for RQ1 our apps were obfuscated but not modified. As such, the

number of semantically equivalent methods should be 100%. As Table 7.1 shows,

however, the average recall performances of FSquaDRA on these apps ranged from

19.05% to 43.48% when obfuscation type grouping G1 was applied. SEMEO, in

contrast was able to achieve recall performances across all nine apps ranging from

95% to 100% in this case (as shown by the boxes representing G1 in Figure 5.1).

When inlining (grouping G6) and outlining (grouping G7) were applied, FSquaDRA

achieved higher recall values than on obfuscation type grouping G1, ranging from

38.12% to 95.74% with an average of 76.09%. SEMEO, on the other hand, was able

to achieve recall performances ranging from 80.56% to 100% with an average above

91.43% in this case(see Table 5.1).

For the set of apps that were modified and then obfuscated (used to answer RQ2),

FSquaDRA was able to achieve recall performances ranging from 19.04% to 42.86%

www.manaraa.com

38

Table 7.1: Recall of FSquaDRA Using RQ1 Apps

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9 Average

G1 37.5 20 42.86 43.48 19.05 37.78 25 23.08 43.04 32.42
G6 69.23 63.6 95.74 77.78 92.31 93.75 76.47 77.78 38.12 76.09
G7 69.23 63.6 95.74 77.78 92.31 93.75 76.47 77.78 38.12 76.09

Table 7.2: Recall of FSquaDRA Using RQ2 Apps

Grouping App 1 App 2 App 3 App 4 App 5 App 6 App 7 App 8 App 9 Average

G1 37.5 20 42.86 42.85 20 19.04 25 23.08 42.32 30.29
G6 69.23 63.63 95.74 95.74 92.31 93.75 76.47 77.78 21.8 76.27
G7 69.23 63.63 95.74 95.74 92.31 93.75 76.47 77.78 21.8 76.27

when obfuscation type grouping G1 was applied (see Table 7.2). SEMEO, in contrast,

achieved recall performances ranging ranging from 75% to 100% (boxes representing

G1 in Figure 5.2). For obfuscation type groupings G6 and G7, FSquaDRA’s recall

ranged from 21.8% to 95.74% with average of 76.27%. SEMEO, on the other hand,

achieved recall performances ranging from 48.53% to 99.18% with an average above

81.84%(see Table 5.2).

The results we present for FSquaDRA do not include those for composite obfus-

cation (obfuscation type groupings G2-G5). This is because when we applied these

groupings, we found that the recall performance of FSquaDRA was not sensitive

to the differences in groupings. We believe that the approaches used to create com-

posite obfuscation groupings in our study do not change resource usage, which is the

main analysis criterion utilized by FSquaDRA. In contrast, SEMEO’s recall per-

formance is sensitive to these different approaches: under all approaches, SEMEO

is significantly more accurate than FSquaDRA at detecting semantically equivalent

methods.

www.manaraa.com

39

7.2 Applying SEMEO on Apps Obfuscated by

ProGuard

We next sought to assess whether SEMEO can identify semantically equivalent meth-

ods in apps that have been obfuscated by ProGuard, an obfuscation tool for An-

droid. ProGuard is commonly used to protect intellectual property. Obfuscation

through ProGuard is applicable within the Android Studio IDE.

To perform our evaluation, we chose apps that we can successfully apply Pro-

Guard to; these include six of the apps used in our initial study. In this case, we

utilized apps that contain modifications (the apps used to answer RQ2). We first

applied ProGuard to the source code. Then, we applied obfuscation grouping G1

(individual obfuscation types) and obfuscation grouping G5 (composite obfuscation

types). Table 7.3 lists the numbers of modified methods used, and recall values in-

volved, when SEMEO and FSquaDra were used in these cases.

Note that once we applied ProGuard to an app, the structure of the app can

change. For example, Proguard removes dead code and performs some optimization

including inlining. As such, we had to reapply Alan after an app that has been

obfuscated by ProGuard. This caused the number of modified methods for each

app to be different than those listed in Table 4.1 due to changes to the program

structure.

As Table 7.3 shows, SEMEO was more effective than FSquaDRA at detecting

semantically equivalent methods when two or more layers of obfuscations (ProGuard

followed by our own additional obfuscation types) were applied. SEMEO achieved

recall values ranging from 52.02% to 94.87% when two layers of obfuscations were

applied (e.g., ProGuard and an obfuscation type in G1), with the average recall

value of 79.04%. When six layers of obfuscations were applied (i.e., ProGuard and

www.manaraa.com

40

Table 7.3: Recall Results (%) Achieved by SEMEO and FSquaDRA When Apply-
ing ProGuard on Obfuscation Type Grouping G1 and G5

Modified G1 G5
Apps Methods Semeo FSquaDRA Semeo FSquaDRA

App 1 3 73.34 37.50 55.56 37.50
App 2 8 52.02 20.00 51.40 20.00
App 3 10 68.47 42.86 64.74 42.86
App 6 10 94.87 37.78 91.31 37.78
App 7 11 94.36 25.00 84.11 25.00
App 8 10 91.18 23.08 91.05 23.08

Average 79.04 31.04 73.03 31.04

G5), SEMEO achieved recall values ranging from 51.40% to 91.31% with an average

recall value of 73.03%. FSquaDRA, on the other hand, achieved recall values rang-

ing from 20% to 42.86% with an average of 31.04%. Further, as noted in Section 7.1,

FSquaDRA was not sensitive to differences in obfuscation type groupings.

Table 7.4 reports the analysis times observed in this study. FSquaDRA was

consistently much faster than SEMEO. In the case of App 8, when G1 was ap-

plied, FSquadra was more than 200 times faster than SEMEO. This is because

FSquaDRA’s resource usage analysis is much faster than our analysis, which must

analyze code-level birthmarks that have been obfuscated. Despite being much slower,

however, SEMEO produced much more precise analysis results in an amount of time

that is not unreasonable: the longest analysis time we observed was just over 30

seconds.

Table 7.4: Analysis Times (Seconds) Required by SEMEO and FSquaDRA When
Applying ProGuard on Obfuscation Type Grouping G1 and G5

G1 G5
Apps Semeo FSquaDRA Semeo FSquaDRA

App 1 1.92 0.10 0.70 0.11
App 2 6.56 0.10 2.74 0.15
App 3 8.54 0.15 4.07 0.19
App 6 19.98 0.13 21.94 0.11
App 7 5.80 0.13 3.91 0.11
App 8 33.00 0.16 18.86 0.11

www.manaraa.com

41

7.3 Identifying Semantically Equivalent Methods

in Real-World Repackaged Malware

Within a week of official release of Pokémon Go in the US, several repackaged ma-

licious versions of the app were distributed through the third party stores. In coun-

tries that have no access to Google Play, third party stores are the main distribution

channels by which Android users obtain apps. Furthermore, popular games such as

Pokémon Go had different release dates in different countries, so many users who

could not wait for the official release date in their countries downloaded the app from

third party stores. Many of these stores, however, are less rigorous than Google Play

when it comes to vetting submitted apps for security vulnerabilities. Moreover, three

instances of repackaged Pokémon Go malware have been made available for download

from Google Play [9, 12].

Typically, popular apps attract the attention of cyber-criminals because they are

highly downloaded, and thus, repackaged versions unknowingly downloaded by users

can infect a large number of devices quickly. For example, one version of Pokémon

Go was repackaged with a Remote Access Tool or RAT. For this particular app,

the malware author downloaded the legitimate version that had been obfuscated

using ProGuard. The malware author modified the app to contain a RAT tool

called DroidJack, which allows cyber criminals to remotely take control of infected

devices [20, 31]. The presence of this malicious version of the app was first detected

three days after its official release.

In this case study, we investigated the effectiveness of SEMEO at identifying the

repackaged components in this repackaged release of Pokémon Go. The legitimate

version contains 37,024 methods while the repackaged version contains 38,878 meth-

ods. We used information from a security analysis result [20] to identify the methods

www.manaraa.com

42

that had been modified or added. In total, there were 1,854 such methods. We then

used SEMEO to analyze both versions of the app. SEMEO found 95.23% of the

methods in the two versions of the app to be equivalent. The remaining 4.77% of

methods are in fact all the modified methods that have been previously reported [20].

The analysis time was approximately 2,300 seconds. We also used FSquaDRA to

analyze these two versions of Pokémon Go. FSquaDRA found 89.47% of the meth-

ods to be similar. This lower accuracy translates to 2,240 additional methods that a

security analyst needs to analyze because they are reported as not equivalent.

www.manaraa.com

43

Chapter 8

Related work

We have already discussed ViewDroid [39] and FSquaDRA [40], and presented

results comparing SEMEO to the latter of these. These two techniques are the most

directly comparable to SEMEO.

There are other de-obfuscation tools that can be used to indirectly help with

the task SEMEO performs: a de-obfuscator can be applied, and then de-obfuscated

modules can be differenced against original unobfuscated modules. We did attempt to

apply this approach using several such tools. One tool, dex-oracle [4], looks for specific

patterns and cannot deobfuscate our programs. We also considered Androsim, which

is a commonly used Android reverse engineering tool in the Androguard toolset [15].

Androsim identifies similarities between two applications. However, when we applied

Androsim to original and obfuscated applications it misclassified many obfuscated

methods as not equivalent to their original methods. This occurred because Androsim

can handle only simple obfuscation types. We also attempted to use Simplify [5] but

it also failed to deobfuscate most methods.

In addition to the tools just discussed, there is some other work on detecting obfus-

cation types. Myles et al. [28] analyze binary code to look for similarity based on K-

www.manaraa.com

44

gram. However, their approach cannot handle two types of obfuscation, namely, junk

code insertion and code reordering. SAFE, which is a malware detection algorithm,

can handle simple obfuscations, like inserting NOP instructions [7]. Kruegel [24]

uses static analysis on binaries to detect kernel-level rootkits. Apposcopy [16] is a

semantics-based analysis tool to detect Android malware based on signatures. Dex-

teroid [21] is a tool that detects behavior-based malware according to the Android

life cycle model. None of these tools can analyze obfuscated code to look for semantic

equivalence.

There are also existing Android clone detection tools such as AnDarwin [11]

and DNAdroid [10]. The purpose of these clone detection tools is to detect clone

apps. As such, they are capable of working with some forms of obsfucation tech-

niques. However, they are not publicly available so we could not use them in our

studies. Symbolic semantic analysis tools can also be used to determine the semantic

equivalence of two applications. However, they do not scale well for applications in

large applications [29, 30, 33].

www.manaraa.com

45

Chapter 9

Conclusions and Future work

We have presented a technique for directly identifying (without first deobfuscating)

obfuscated methods in Android apps that are semantically equivalent to original

non-obfuscated methods. Our empirical results show that our approach, SEMEO,

can achieve a high level of recall at no loss of precision in identifying such methods.

SEMEO operates on types of obfuscation many of which are difficult to automatically

deobfuscate. Our approach is also reasonably efficient on apps consisting of no more

than 2200 methods; as such the current approach is sufficiently efficient to apply to

a large percentage of existing Android apps.

We also compared the accuracy of Semeo with that of FSquaDRA, an alterna-

tive approach for obfuscation resilient repackaged app detection. The results indicate

that Semeo is more accurate at identifying methods that have been modified. We

also evaluated the capability of Semeo to deal with ProGuard and find that it can

effectively handle obfuscation types that ProGuard utilizes. Lastly, we used Se-

meo and FSquaDRA to identify repackaged components of a version of Pokémon Go

malware. The results indicate that Semeo can detect all modified malicious methods

while FSquaDRA mistakenly identifies over 2000 benign methods as malicious.

www.manaraa.com

46

The potential benefit of our approach involves its ability to reduce the number of

methods that analysts or analysis tools must consider when searching for malicious

repackaged code, allowing them to apply their efforts more cost-effectively than would

otherwise be possible.

In future work we intend to explore methods for improving the scalability of

our approach, several approaches for which were discussed in Chapter 6. We will also

consider methods for improving the approach’s recall, particularly in cases where more

complex composite obfuscations are used. Finally, we intend to conduct additional

studies of the approach, including studies applying it to more repackaged malicious

apps.

www.manaraa.com

47

Bibliography

[1] The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[2] Dalvik bytecode. On-line article, 2015. https://source.android.com/devices/tech/dalvik/dalvik-

bytecode.html.

[3] Andrey Ponomarenko. A tool for checking backward API/ABI compatibility of

a Java library. On-line article, 2013. https://github.com/lvc/japi-compliance-

checker.

[4] CalebFenton. A pattern based Dalvik deobfuscator which uses lim-

ited execution to improve semantic analysis. On-line article, 2015.

https://github.com/CalebFenton/dex-oracle.

[5] CalebFenton. Generic Android Deobfuscator. On-line article, 2015.

https://github.com/CalebFenton/simplify.

[6] Joshua Cannell. Obfuscation: Malware’s best friend. On-line article, March

2013. https://blog.malwarebytes.org/threat-analysis/2013/03/obfuscation-

malwares-best-friend/.

[7] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect

malicious patterns. In Proceedings of the 12th Conference on USENIX Secu-

www.manaraa.com

48

rity Symposium - Volume 12, SSYM’03, pages 12–12, Berkeley, CA, USA, 2003.

USENIX Association.

[8] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Wa-

termarking, and Tamperproofing for Software Protection. Addison-Wesley Pro-

fessional, 1st edition, 2009.

[9] contagio mini dump. Pokemon GO with Droidjack - Android sample. On-line

article, 2016. http://contagiominidump.blogspot.com.

[10] Jonathan Crussell, Clint Gibler, and Hao Chen. European Symposium on Re-

search in Computer Security, chapter Attack of the Clones: Detecting Cloned

Applications on Android Markets, pages 37–54. Springer, Berlin, Heidelberg,

2012.

[11] Jonathan Crussell, Clint Gibler, and Hao Chen. Computer Security – ESORICS

2013: 18th European Symposium on Research in Computer Security, Egham,

UK, September 9-13, 2013. Proceedings, chapter AnDarwin: Scalable Detection

of Semantically Similar Android Applications, pages 182–199. Springer, Berlin,

Heidelberg, 2013.

[12] Dan Goodin. Fake Pokémon Go app on Google Play infects phones with screen-

locker. On-line article, 2016. http://arstechnica.com/security/2016/07/fake-

pokemon-go-app-on-google-play-infects-phones-with-screenlocker/.

[13] DARPA. Automated Program Analysis for Cybersecurity (APAC). On-line

article, 2012. http://www.darpa.mil/program/automated-program-analysis-for-

cybersecurity.

[14] G Data. At a glance. In G Data Mobile Malware Report, 2015.

www.manaraa.com

49

[15] Anthony Desnos. AndroGuard. On-line article, May 2013.

http://androguard.blogspot.com/ .

[16] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-

based detection of android malware through static analysis. In Proceedings of

the 22Nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, FSE 2014, pages 576–587, New York, NY, USA, 2014. ACM.

[17] Guard Square. ProGuard. On-line article, 2016.

http://proguard.sourceforge.net/.

[18] Inc. IDC Research. Smartphone OS Market Share, 2015 Q2, 2015.

https://mobiforge.com/news-comment/mobile-os-market-share-q2-2015/.

[19] Neil D. Jones. Computability and Complexity: From a Programming Perspective.

MIT Press, Cambridge, MA, USA, 1997.

[20] Joseph Sullivan. Pokmon Go bundles with Malicious Re-

mote Administration Tool DroidJack. On-line article, 2016.

http://blog.trustlook.com/2016/09/02/pokemon-go-bundles-with-malicious-

remote-administration-tool-droidjack/.

[21] Mohsin Junaid, Donggang Liu, and David Chenho Kung. Dexteroid: Detecting

malicious behaviors in android apps using reverse-engineered life cycle models.

CoRR, abs/1506.05217, 2015.

[22] Raghavan Komondoor and Susan Horwitz. Semantics-preserving procedure ex-

traction. In Proceedings of the ACM Symposium on Principles of Programming

Languages, pages 155–169, 2000.

www.manaraa.com

50

[23] Evgenios Konstantinou. Metamorphic Virus: Analysis and Detection. Technical

Report RHUL-MA-2008-02, Royal Holloway, University of London, Janary 2008.

[24] Christopher Kruegel, William Robertson, and Giovanni Vigna. Detecting kernel-

level rootkits through binary analysis. In Proceedings of the 20th Annual Com-

puter Security Applications Conference, ACSAC ’04, pages 91–100, Washington,

DC, USA, 2004. IEEE Computer Society.

[25] Patrick Lam, Eric Bodden, Ondřej Lhoták, and Laurie Hendren. The Soot frame-

work for Java program analysis: a retrospective. In Cetus Users and Compiler

Infrastructure Workshop, Galveston Island, TX, October 2011.

[26] Linux Foundation. JavaAPI Compliance Checker, 2015.

http://ispras.linuxbase.org/index.php/

Java API Compliance Checker.

[27] Mr.Trojans. ALAN – Android Malware Evaluating Tools Released. On-line arti-

cle, 2015. http://seclist.us/alan-android-malware-evaluating-tools-released.html.

[28] Ginger Myles and Christian Collberg. K-gram based software birthmarks. In

Proceedings of the 2005 ACM Symposium on Applied Computing, SAC ’05, pages

314–318, Santa Fe, New Mexico, 2005.

[29] Nimrod Partush and Eran Yahav. Abstract semantic differencing via speculative

correlation. SIGPLAN Not., 49(10):811–828, October 2014.

[30] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.

Differential symbolic execution. In Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, SIGSOFT

’08/FSE-16, pages 226–237, New York, NY, USA, 2008. ACM.

www.manaraa.com

51

[31] Proofpoint Staff. DroidJack Uses Side-LoadIt’s Super Effective! Back-

doored Pokemon GO Android App Found. On-line article, 2016.

https://www.proofpoint.com/us/threat-insight/post/droidjack-uses-side-load-

backdoored-pokemon-go-android-app.

[32] Babak Bashari Rad and Maslin Masrom. Metamorphic virus variants classifi-

cation using opcode frequency histogram. In Proceedings of the International

Conference on Computers, pages 147–155, 2010.

[33] David A Ramos and Dawson R. Engler. Practical, low-effort equivalence ver-

ification of real code. In Proceedings of the 23rd International Conference on

Computer Aided Verification, CAV’11, pages 669–685, Berlin, Heidelberg, 2011.

Springer-Verlag.

[34] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Droidchameleon: Evaluating an-

droid anti-malware against transformation attacks. In Proceedings of the ACM

Symposium on Information, Computer and Communications Security, pages

329–334, 2013.

[35] David Schuler, Valentin Dallmeier, and Christian Lindig. A dynamic birthmark

for java. In Proceedings of the Twenty-second IEEE/ACM International Con-

ference on Automated Software Engineering, ASE ’07, pages 274–283, Atlanta,

Georgia, USA, 2007.

[36] Jeremy G. Siek. An implementation of graph isomorphism testing, 2001.

http://www.boost.org/doc/libs/1 60 0/libs/graph/

doc/isomorphism-impl.pdf.

[37] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley. JVM specifications.

On-line article, 2013. https://docs.oracle.com/javase/specs/jvms/se7/html/.

www.manaraa.com

52

[38] Wing Wong and Mark Stamp. Hunting for metamorphic engines. Journal in

Computer Virology, 2(3):211–229, 2006.

[39] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. View-

droid: Towards obfuscation-resilient mobile application repackaging detection.

In Proceedings of the 2014 ACM Conference on Security and Privacy in Wire-

less & Mobile Networks, WiSec ’14, pages 25–36, Oxford, United Kingdom,

2014.

[40] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco La Spina, and

Ermanno Moser. Fsquadra: Fast detection of repackaged applications. In IFIP

28th Annual Data and Applications Security and Privacy, pages 130–145, Vienna,

Austria, July 2014.

[41] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged

smartphone applications in third-party android marketplaces. In Proceedings

of the Second ACM Conference on Data and Application Security and Privacy,

CODASPY ’12, pages 317–326, San Antonio, Texas, USA, 2012.

[42] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization

and evolution. In Proceedings of the IEEE Symposium on Security and Privacy,

pages 95–109, San Francisco, CA, USA, May 2012.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-2016

	SEMEO: A SEMANTIC EQUIVALENCE ANALYSIS FRAMEWORK FOR OBFUSCATED ANDROID APPLICATIONS
	Zhen Hu

	tmp.1480632363.pdf.tSboV

